Antilock-Braking System Using Fuzzy Logic

نویسنده

  • K. Subbulakshmi
چکیده

This paper proposes an innovative way to interface the concept of FUZZY LOGIC and ABS system used (mainly in transportation and motors) and tests on an experimental car with antilock-braking system (ABS) and vehicle speed estimation using fuzzy logic. Vehicle dynamics and braking systems are complex and behave strongly non-linear which causes difficulties in developing a classical controller for ABS. Fuzzy logic, however facilitates such system designs and improves tuning abilities. The underlying control philosophy takes into consideration wheel acceleration as well as wheel slip in order to recognize blocking tendencies. The knowledge of the actual vehicle velocity is necessary to calculate wheel slips. This is done by means of a fuzzy estimator, which weighs the inputs of a longitudinal acceleration sensor and four wheel speed sensors. If lockup tendency is detected, magnetic valves are switched to reduce brake pressure. Performance evaluation is based both on computer simulations and an experimental car. To guarantee real-time ability (one control cycle takes seven milliseconds) and to relieve the electronic control unit (ECU), all fuzzy calculations are made by the fuzzy coprocessor SAE 81C99A. Measurements in the experimental car prove the functionality of this automotive fuzzy hardware system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fuzzy Sliding Mode Control for Antilock Braking System

This paper focuses on the development of a robust fuzzy sliding-mode scheme for controlling a vehicle motion system by continuously adjusting the brake torque, Fuzzy logic known for its properties of universal approximator and sliding mode control for its robustness in the presence of parameter variations and the disturbances are employed to control the wheel slip rate in emergency braking mane...

متن کامل

Enhanced Antilock Braking System using Fuzzy Logic Road Detector

Antilock braking system (ABS) stops a vehicle wheel without locking while decreasing the stopping distance. Here we use fuzzy logic to detect the road conditions. Vehicle dynamics and braking systems is complex and proposed controller in different road detected states. They behave strongly non-linear which causes difficulties in developing a classical controller for ABS. Fuzzy logic, however fa...

متن کامل

P.Khatun C.M.Bingham N.Schofield

—— This paper describes the preliminary research and implementation of an experimental test bench set up for an electric vehicle Antilock Braking System (ABS)/Traction Control System (TCS) representing the dry, wet and icy road surfaces. A Fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking system is presented. The test facility comprised of an induction...

متن کامل

Antilock Regenerative Braking System Design for a Hybrid Electric Vehicle

Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the ...

متن کامل

Integrated control of electromechanical braking and regenerative braking in plug-in hybrid electric vehicles

This paper proposes the use of Electromechanical Brakes (EMB) in combination with regenerative braking in PHEV so braking force can be distributed to front and rear axles according to an optimal curve instead of a linear line. Therefore, more braking force will be distributed to front axle, which will offer more kinetic energy for regenerative braking. Fuzzy logic control is used to allocate br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014